

Polymers in Agriculture: A short review

Sumanta K. Sen Gupta¹, Mamta M. Topno¹, Smita Singh¹ & Praween Surin²

¹Department of Chemistry, Gossner College, Ranchi, Jharkhand, India

²Department of Zoology, Gossner College, Ranchi, Jharkhand, India

Received : 14th September, 2025 ; Accepted : 14th October, 2025

DOI:- <https://doi.org/10.5281/zenodo.17853317>

ABSTRACT

The integration of polymer science into agriculture has transformed conventional farming practices by improving water use efficiency, nutrient management, and environmental sustainability. This paper reviews the types, functions, and impacts of polymers used in agriculture - from superabsorbent hydrogels and mulch films to controlled-release fertilizer carriers and biodegradable alternatives. Recent advances emphasize eco-friendly and biodegradable systems that minimize plastic accumulation in soils. Challenges remain in cost, scalability, and field degradation dynamics. Future research must bridge polymer engineering and soil ecology to ensure polymers contribute to sustainable agricultural intensification.

Key Words - Polymers, Agriculture, Soil management, Biodegradability

***Corresponding author :** sksengupta2006@gmail.com

INTRODUCTION

Global agriculture faces increasing pressure from climate variability, water scarcity, and soil degradation. As the demand for food continues to rise, materials science innovations are being explored to enhance crop productivity and environmental resilience. Among these, polymers - both synthetic and natural - have gained considerable attention for their multifunctional roles in water retention, nutrient management, and crop protection (Kumar *et al.*, 2020). Polymers provide controlled release properties, improve soil structure, and reduce irrigation needs. However, their environmental implications, especially concerning persistence and microplastic formation, have also raised concerns (Mansoor *et al.*, 2022). This paper examines the roles of polymers in agriculture, categorizing them into key application domains, reviewing their benefits and drawbacks, and identifying emerging trends toward biodegradable and sustainable polymer systems.

Classification of Polymers in Agricultural Use

Polymers applied in agriculture can be broadly categorized into synthetic non-biodegradable, biodegradable/biopolymeric, and functional composites. Synthetic polymers like PE and PP dominate due to their low cost and strength, but their persistence creates long-term ecological burdens (Kumar *et al.*, 2025). In contrast, biodegradable polymers degrade under soil microbial activity, offering a more sustainable path (Malik *et al.*, 2023).

APPLICATIONS OF POLYMERS IN AGRICULTURE

Water Management and Soil Conditioning

Superabsorbent polymers (SAPs) can absorb hundreds of times their weight in water, releasing it gradually to plant roots during dry conditions. Hydrogels made of polyacrylamide, polyacrylate, or starch-based composites significantly improve soil moisture retention and reduce irrigation

frequency (Omar *et al.*, 2025). Malik *et al.*, 2023 demonstrated that SAP-treated soils reduced evaporation losses by up to 30% and improved crop yield under water stress.

Mulching and Microclimate Regulation

Mulch films regulate soil temperature, suppress weeds, and conserve moisture. Polyethylene films are widely used but generate persistent residues that contribute to soil microplastic pollution (De *et al.*, 2024). Recent studies highlight biodegradable mulch films made from PLA and starch blends that degrade after harvest without harmful residues (Seddighi *et al.*, 2025).

Controlled Release of Fertilizers and Agrochemicals

Polymers are engineered into coating materials for fertilizers and pesticides to ensure controlled release, minimizing leaching and volatilization losses. Polymer-coated urea (PCU) and polymer-encapsulated pesticides have shown enhanced nutrient use efficiency and reduced environmental contamination (Kaur *et al.*, 2025).

Seed Coating and Plant Growth Enhancement

Polymers serve as seed coating agents that deliver micronutrients, growth regulators, and protective agents directly to germinating seeds. Polyvinyl alcohol (PVA) and starch-based coatings improve germination rates and provide controlled hydration (Zhao *et al.*, 2025).

Environmental Implications

While polymers enhance efficiency and productivity, their environmental impact cannot be overlooked. Persistent polymers accumulate as microplastics in soil, potentially altering microbial activity and soil porosity (Chen *et al.*, 2025). Studies show microplastic fragments can affect nutrient cycling and root growth, particularly in sandy soils (Yang *et al.*, 2025). Biodegradable polymers mitigate these issues but may degrade inconsistently under field conditions (Yao *et al.*, 2024).

Emerging Trends and Future Directions

Recent research trends highlight a shift toward eco-designed polymers integrating renewable

feedstocks and smart release mechanisms. Bio-based hydrogels, stimuli-responsive systems, hybrid nanocomposites, and circular economy approaches all represent next-generation innovations in agricultural polymers.

CONCLUSION

Polymers have become indispensable tools in modern agriculture, driving innovations in water conservation, nutrient delivery, and soil management. However, the dual challenge of performance and environmental safety persists. Continued development of biodegradable and bio-based polymers is essential to ensure polymers support long-term agricultural sustainability.

ACKNOWLEDGEMENT

The authors appreciate the support of Gossner College, Ranchi in this publication.

REFERENCES

Chen, Yalan, Yang Li, Xinru Liang, Siyuan Lu, Jiaqi Ren, Yuqin Zhang, Zichen Han, Bo Gao, and Ke Sun. 2024. Effects of microplastics on soil carbon pool and terrestrial plant performance. *Carbon Research*. 3(1): 37.

de Sadeleer, Irmeline, and Anna Woodhouse. 2024. Environmental impact of biodegradable and non-biodegradable agricultural mulch film: A case study for Nordic conditions. *The International Journal of Life Cycle Assessment*. 29(2): 275-290.

Kaur, Ramandeep, Rupali Sharma, and Gagandeep Kaur Chahal. 2021. Synthesis of lignin-based hydrogels and their applications in agriculture: A review. *Chemical Papers*. 75(9): 4465-4478.

Kumar, Ankesh, Ram Swaroop Meena, D. E. Nirmal, D. S. Gurjar, Ajeet Singh, Gulab Singh Yadav, and Gourisankar Pradhan. 2020. Response of polymers and biofertilizers on soybean (*Glycine max*) yield under rainfed condition. *Indian Journal of Agricultural Sciences*. 90(4): 767-770.

Kumar, Krishan, Annu Khatri, and Indu Shekhar Thakur. 2025. Existing Scenario and Environmental Significance of Biodegradable

Plastics: A Review for a Sustainable Future. *Green Energy and Environmental Technology*.

Malik, S., Chaudhary, K., Malik, A., Punia, H., Sewhag, M., Berkesia, N., Nagora, M., Kalia, S., Malik, K., Kumar, D. and Kumar, P. 2023. Superabsorbent Polymers as a Soil Amendment for Increasing Agriculture Production with Reducing Water Losses under Water Stress Condition. *Polymers*. 15 (1): 161." DOI: <https://doi.org/10.3390/polym15010161>. PMID: <https://www.ncbi.nlm.nih.gov/pubmed/36616513>

Mansoor, Zinnia, Fideline Tchuenbou-Magaia, Marek Kowalcuk, Grazyna Adamus, Georgina Manning, Mattia Parati, Iza Radecka, and Habib Khan. 2022. Polymers use as mulch films in agriculture-a review of history, problems and current trends. *Polymers* 14(23): 5062.

Omar, Haneen, and Edreese Alsharaeh. 2024. Improving water retention in sandy soils with high-performance superabsorbents hydrogel polymer. *ACS omega* 9(22): 23531-23541.

Seddighi, Hassan, Keivan Shayesteh, Navid Omrani, and Pouya Es'haghi. 2024. Fertilizers coating methods: A mini review of various techniques. *Chemical Research and Technology*. 1(1): 38-48.

Yang, Liyu, Pu Shen, Haiyan Liang, and Qi Wu. 2024. Biochar relieves the toxic effects of microplastics on the root-rhizosphere soil system by altering root expression profiles and microbial diversity and functions. *Ecotoxicology and Environmental Safety*. 271: 115935.

Yao, Xiao, Xue Yang, Yisang Lu, Yinyuan Qiu, and Qinda Zeng. 2024. Review of the synthesis and degradation mechanisms of some biodegradable polymers in natural environments. *Polymers*. 17(1): 66.

Zhao, Xu, Jiawei Lu, Shumian Jiang, Cheng Fu, Yongfu Li, Hai Xiang, Ruohui Lu, Jie Zhu, and Bing Yu. 2025. Enhancing slow-release performance of biochar-based fertilizers with kaolinite-infused polyvinyl alcohol/starch coating: From fertilizer development to field application. *International Journal of Biological Macromolecules*. 302: 140665.
