Assessment of Algal Diversity in Nandan Pahar Pond, Deoghar

Mrityunjay Kumar* & Radhakrishna Jha

University Department of Botany, Ranchi University, Ranchi, Jharkhand, India

Received: 01st June, 2025 ; Accepted: 28th June, 2025 DOI:- https://doi.org/10.5281/zenodo.17118154

ABSTRACT

Algae are large group of prokaryotic and eukaryotic photosynthetic organisms showing diversity in their structure. In this work distribution of algae of Nandan Pahar pond has been investigated. Total fifty-six water algal samples were collected from different unexplored sites of Nandan Pahar pond. They were unicellular, filamentous, branched and colonial. They were identified based on microscopic observation and characters such as filament length, colonial diameter, pigments colour, shape and cell dimensions. Results revealed that these algae belong to four major classes. These are Chlorophyceae, Bacillariophyceae, Charophyceae and Cyanophyceae. Maximum algal taxa belong to green algae followed by blue green algae, diatoms and charophyceae

Key Words - Green algae, Nandan Pahar Pond, Cyanophyceae, Bacillariophyceae, Algal indicators, Water quality,

*Corresponding author: sk750154@gmail.com

INTRODUCTION

Algae has drawn much attention due to their primary productivity in the water food chain of water ecosystem diversity, their biological assessment of water quality, pollution abatement capacity and as a source of structurally novel and biologically active metabolites with antimicrobial capacity etc. Water ecosystem varies in size and composition and contains a large variety of organisms. Algae are large group of prokaryotic and eukaryotic photosynthetic organism found in many different forms viz, individual cells, colonial or filament and exhibit vast diversity in the ecosystem. Algae are found everywhere in nature like ocean, lakes, river, ponds, puddles, moist surface and fresh water. Algae are the indicator of water quality due to their rapid response to environmental changes related to larger animals, plants and human being. Algae are used for biological assessment of water quality and bioindicator of eutrophication. The algal

community both planktonic and benthic are also important ecological indicator. The dominance of green algae and diatoms presence in relatively clean and oligotrophic water bodies whereas blue green algae bloom formation indicate that the water body is polluted or eutrophic. The present investigation has been carried out to observe the algal diversity of Nandan Pahar Pond.

MATERIALS & METHODS

Study site:

Nandan pahar pond is my study site. This pond is located on this western part of Nandan pahar at Deoghar. The catchment area of Nandan pahar pond is 15 acres.

Water storage capacity is 70 million gallons. Water is supplied to the people of Deoghar town from this pond throughout the year. Algal samples were collected on a monthly basis. For this, scalpel,

forceps, plankton net etc. were used. The materials collected were placed in plastic containers along with some water of the habitat. They were brought to the laboratory, kept in properly clean in fresh water and examined in fresh and also preserved condition. Preservation was done in 2 to 4% formalin. Identification was done with the help of relevant monographs and research papers by Desikachary (1959), Philipose (1967), Tiffany & Britton (1952), Chaterjee and Raziuddin (2006), Gandhi (1958c), Gandhi (1966), Gonzalves and Gandhi (1952).

RESULTS & DISCUSSION

The author has collected, studied and identified 56 taxa of algae belonging to 4 divisions from the Nandan Pahar pond. Of these, 56 taxa, 20 belong to division Cyanophyta, 28 belong to division Chlorophyta, and 6 to Bacillariophyta and 2belong to Charophyta. Maximum algal taxa belong to green algae followed by blue green algae and diatoms. Among the green algae dominant forms were Scendesmus spp., Chlamydomonas spp., Chlorella spp., Spirogyra spp., Ulothrix spp., Chaetophora spp., Oedogonium spp., Rarely found green algae were Cosmarium spp., and Pediastrum spp., Among the blue green algae Microcystis spp., Oscillatoria spp., Phormidium spp., Spirulina spp., were dominant, while Merismopedia spp. were rare forms. Among the diatoms Fragillaria spp., Navicula spp., Synedra spp., were dominant while Cymbella spp. were rare forms. Among Charophytes Chara spp. and Nitella spp. were dominant.

Table 1: List of algae collected from Nandan Pahar Pond. (Arranged Division-wise)

SI. No.	DIVISION CYANOPHYTA
01	Microcystis flos-aquae Kirchner
02	Gleocapsa polydermatica Kutz
03	Aphanocapsa montana Cramer
04	<i>Merismopaedia tenuissima</i> Lemm
05	Oscillatoria chilkensis Biswas
06	Oscillatoria gloiophila Grun.
07	Lyngbya kuetzingii Schmidle
08	Spirulina major kutz Ex Gomont
09	Lyngbya ceylanica Wille
10	Lyngbya palmarum Biswas
11	Phormidium ambigum Gomont

12	Lyngbya putealis Mont. Gomont
13	<i>Lyngbya magnifica</i> Gardner
14	Cylindrospernum musicola Dixit
15	Anabaena ambigua Rao, C.B.
16	Aulosira fertilissima Ghose
17	Plectonena radiosum Gomont
18	Plectonena tomasinianum (Kutz)
19	<i>Scytonema bohneri</i> Schmidle
20	Tolypothrix tenuis Kutz Johs.
	DIVISION CHAROPHYTA
01	Nitella terrestris lyenger
02	Chara braunii Gmelin
	DIVISION BACILLARIOPHYTA
01	Fragillaria sp.
02	Navicula sphaerophora Kutzing
03	Pinnularia braunii Hust.
04	Rhopalodia gibba O.Mull
05	Gomphonema constrictum
06	Synedra ulna Ehrrenberg
	DIVISION CHLOROPHYTA
01	Chlorococcum infusionum Meneghini
02	Tetraedron trilobulatum Hansgirg
03	Nephrocytium agardhianum Naegeli
04	Ulothrix rorida Thuret
05	Ulothrix tenuissima Kuetzing
06	Uronema gigas Vischer
07	Hormidiella parvula lyengar
09	Geminella mutabilis Wille
10	Geminella interrupta Lagerheim
11	Hormidium flaccidum A Braun
12	Microspora willeana Lagerheim
13	Microspora stagnorum Lagerheim
14	Sphaeroplea annulina C.A. Agardh
15	Zygnema conspicuum Transeau
16	Spirogyra hyaline Cleve, Nova
17	Spirogyra regularies Kriegar
18	Closterium venus Kutz.
19	Closterium ehrenbergii Menegh
20	Cosmarium absoletum Hantzsch
21	Cosmarium cucurbitinum Lutkem
22	Cosmarium moniliforme f punctata
23	Cosmarium granatum Brebisson
24	Cosmarium angulatum Rab.
25	Chlamydomonas sp.
26	Scendesmus abundans Chodat
27	Tetraedron trigonum Turner
28	Chlorella vulgaris

These findings are in conformity with the fact that the Nandan pahar is reservoir of so many algal floras. Now a days visitors are throwing waste in and around the pond, recreation activities like swimming, boating etc., bathing and washing of utensils by local people, using low quality detergents, immersion of idols of Gods/Goddesses during festivals and annual picnics were observed. Of the 60 genera listed as pollution tolerant by Palmer, some are found growing in the Nandan Pahar Pond. These are, in order of decreasing emphasis, Oscillatoria, Scenesdesmus, Chlorella, Nitzschia, Navicula, Stigeoclonium, Synedra, Phormidium, Closterium, Spirogyra, Anabaena, Fragilaria, Ulothrix, Spirulina Coelasstrum, Pinnularia and Cosmarium.

Of the 80 most pollution tolerant species of algae in the order of decreasing emphasis listed by Palmer (1969), 15 are being reported from the Nandan pahar pond. These are Nitzschia palea, Oscillatoria limosa, Oscillatoria tenuis, Synedra ulna, Oscillatoria chlorina, Chlorella vulgaris, Oscillatoria princeps, Gomphonema parvulum, Closterium acerosum, Scenedesmus obliquus, Navicula viridula, Nitzschia sigmoidea, Coelastrum microporum, Scenedesmus dimorphus and Fragilaria capucina.

This is clear from Palmers (1969) list which includes many of its species. In the Nandan Pahar pond, many different species of Oscillatoria have been found to grow; Nitzschia palea, Synedra ulna, Chlorella vulgaris, Gomphonema parvulum, Closterium acerosum and Scenedesmus obliquus, included in the top half in Palmers list also grow in this pond under study. Chroococcus turgidus and Merismopedia puncata have been obtained during this study. It has been observed that 3 species of Merismopedia, including M. punctata form water blooms in the Nandan pahar pond Bloom formation is a sign of eutrophication. In eutrophic water bodies, the water is enriched by plant nutrients. It supports abundant microscopic plant life mainly algae.

Table: 2 Relative dominance and floristic diversity of Chlorophyceae

SI.	Name of plants	Dominant	Common	Rare
_	Name of plants	Dominant	Common	Naie
no				
1.	Scenedesmus abundans Chodat	+++	-	-
2.	Scenedesmus carinatus Chodat	+++	ı	-
3.	Scenedesmus quadricauda Berb	+++	-	-
4.	Scenedesmus armatus G.M.Smith	+++	ı	-
5.	Scenedesmus acoleolatas Chodat	+++	-	-
6.	Scenedesmus arcuatus	+++	-	-
7.	Chlorella vulgaris	+++	-	-
8.	Chlamydomonas angulosa Dill	+++	-	-
9.	Chaetophora anceolat Hazen	-	++	-
10.	Ulothrix tenuissima Kuetzing	-	++	-
11.	Cosmarium angulosum Berb	+++	-	+
12.	Caracium angustum A. Braun	-	-	+
13.	Oedogonium sp.	-	++	-
14.	Spirogyra sp.	+++	-	+
15.	Geminella mutabilis Wille	-	-	+
16.	Pediastrum simplex Meyen	-	-	+

Table 3: Relative dominance and floristic diversity of Cyanophyceae

SI.	Name of plants	Dominant	Common	Rare
No.				
1.	Oscillatoria sp.	+++	-	-
2.	Phormidium retzii Gomant	+++	-	-
3.	Phormidium ambigum Gomant	+++	,	-
4.	Microcystis aeruginosa kutz	+++	,	-
5.	Merismopedia gluca Nag	-	-	+
6.	Spirulina major kutz.Ex Gomont	-	++	-

Table 4: Relative dominance and floristic diversity of Bacillariophyceae

SI.	Name of plants	Dominant	Common	Rare
No.				
1.	Cymbella affinis kuitz	-	-	-
2.	Fragillaria sp.	+++	-	-
3.	Cymbella	-	-	-
4.	Fragillaria capucina Desmazieres	+++	-	-
5.	Synedra ulna Ehrrenberg	-	-	-
6.	Gamphonema herculeana cleave	-	++	-
7.	Navicula crytocephala kuet-zing	-	++	-
8.	Syndra ulna ehrrenberg	-	++	-

CONCLUSION

Biomonitoring is the use of biological responses to assess changes in the environment, generally changes due to anthropogenic causes. Algae is a valuable tool that is being used increasingly in water quality monitoring programs of all types. It is thus suggested that biomonitoring should be done in the case of this pond under the present study because Nandan pahar pond is reservoir of many algal taxa.

ACKNOWLEDGEMENT

The authors are grateful to Head, University Department of Botany, Ranchi University, Ranchi for providing necessary laboratory facilities for this research work.

REFERENCES

- Chaterjee G. and Raziuddin M. 2006. Status of water body in relation to some physicochemical parameters in Asansol Town, West Bengal. *Proc Zool. Sac. India*, 5(2): 41-48.
- Desikachary T. V. 1959. Cyanophyta Monograph on Blue Green Algae. Indian Council of agricultural Research, New Delhi, India.
- Gandhi H. P. 1958c. The Fresh Water Diatoms flora of the Hirebhasagar Dam area, Mysore State. *J. Indian Bot. Soc,* 37(2): 249-265.

- Gandhi H. P. 1966. The fresh water Diatoms flora of the Jog Falls, Mysore State. *Nova Hedgwigia*, 11(1/4): 89-147.
- Gonzalves E. A. and Gandhi H. P. 1952. A systematic account of the Diatoms of Bombay and Salsette. Part-I. *J. Indian Bot. Soc.* 31: 117-151.
- Palmer C. M. 1969. Composite rating of algae tolerating organic pollution. *J. Phycol.* 5:78
- Philipose M. T. 1967. Chlorococcales, monograph on algae. Indian Council of Agricultural Research, New Delhi.
- Tiffany L. H. & Britton M. E. 1952. Monograph on the algae of Illinoids, the University of Chicago press.